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PREFACE

In a paper entitled "Asymptotically Fast Solution of Toeplitz and Related

Systems of Linear Equations,"' Bitmead and Anderson present an algorithm

for the inversion of Toeplitz and related matrices. In this report we shall

examine their results and present some extensions.

This report, as well as Reference 1, has as a fundamental concept that

of displacement rank of a matrix. (The proof of many of the results presented

in this report and further results on displacement rank are presented in

References 1 and 2.) The (+) displacement rank of a matrix may be defined

as follows:

For M an n x n matrix given by "

M = 1 ldefineM by

-,M ., -
n~**n,n

0/ 0

M+ = 1,1 "•ln1" -' ' -, --

n-ll" Mn-l,n-1.

The (+) displacement rank of M is equal to rank (M-M). (The (-) displacement
rank is obtained in an analogous way, except that M is obtained from M by

taking "one step up the diagonal.") If M is a Toeplitz matrix, M is constant

along diagonals and is, therefore, of displacement rank less than or equal to

two. The displacement rank may be used as a measure of the "distance" of a

matrix from being Toeplitz.

1. Bitmead, Robert R., and Anderson, Brian D.O., "Asymptotically Fast
Solution of Toeplitz and Related Systems of Linear Equations,"
Linear Algebra and its Applications, 34, pp 103-116, 1980.

2. Kailath, Thomas, Kung, Sun-Yuan, and Morf, Martin, "Displacement Ranks
of Matrices and Linear Equations," Journal of Mathematical Analysis
and Applications, 68, pp 395-407, 1979.



A more direct, and more important, connection between displacement rank
and Toeplitz matrices is the following: The (+) displacement rank of a matrix

M is the smallest number a+~ so that M may be decomposed as M L i i where

L.i and U. are lower and upper triangular Toeplitz matrices, respectively.
(This will, in fact, be our definition and we shall show that the more natural
definition given earlier is equivalent.) This type of decomposition is of
value for two reasons. First, an upper or lower triangular Toeplitz matrix
may be stored by storing a single vector. Second, the multiplication of two
upper or two lower triangular matrices may be effected by a single convolution
of two vectors. Thus, for large matrices of small displacement rank, such as
large Toeplitz matrices, the matrices may be stored more economically in
decomposed form. Further, as terms of the form UL can be decomposed
economically in the form L 1U I + L 2U 2 + L 3 U3 . multiplication of large matrices
with small displacement ranks may be performed economically. The details of
obtaining and manipulating these decompositions form Section One of this
report and the proofs of these results are presented in Section Two.

The reader may have noted that forming multiple products of the form
(L 1 U1 ) ... (LnUn ) will result in geometric growth in the number of terms in the
final decomposition. This appears to be an intrinsic feature of such
products. This unfortunate fact seems to be the major drawback to these
techniques and, unfortunately, it is a very serious one. As we shall see in
Section Four, the algorithm presented in Reference 1, with modifications for
symmetric Toeplitz matrices has computational complexity which is 0(Nlog2N)
for N x N matrices. Due to the large number of terms in the decompositions of
multiple products, the coefficient for this expression is approximately 6300.
It is possible that this number might be smaller in practice, depending on
statistical properties of the matrices to be inverted, but it seems likely
that the algorithm will need substantial alteration before it becomes
practicable.

This report is organized as follows: Section One contains a brief
summary of the principle results needed to obtain and manipulate +)and(-



decompositions for matrices, together with a brief description of the

algorithm presented in Reference 1. In Section Two the results of Section

One, as well as some special results for symmetric matrices, are proved.

Section Three is a detailed exposition of the algorithm given by Bitmead and

Anderson, specialized for use in inverting symmetric, positive definite

Toeplitz matrices. In Section Four the performance of this algorithm is

analyzed.

While the algorithm of Reference 1 is of questionable interest, the

subject of Toeplitz matrices is not, and the techniques presented in

References 1 and 2 yield valuable insights into this subject. Beyond

providing an analysis of an interesting "failure," it is hoped that this

report can be of value as a collection (and clarification/correction) of

results on the subject of displacement rank.
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SECTION ONE

In this section the concept of displacement rank is defined and various

results about it are stated. These results will be established in Section

Two.

A. BASIC DEFINITIONS AND PROPERTIES

DEFINITION 1.1

The (+)-displacement rank of a matrix M is the smallest integer a+(M)

such that

a+(M)

M LiU ( 1 .)
i =1

where Li and Ui are lower and upper triangular Toeplitz matrices,

respectively. The (-)-displacement rank of M is defined as above with a.

replacing a+ and L and U. interchanged.

REMARK

It is obvious that for a Toeplitz matrix, T, a+(T), a_(T) 2. This

follows from the equation T=T£ *I+I-Tu=ITg+Tu.I, where T. and Tu are the upper

and lower "parts" of T, respectively. It is not, perhaps, as obvious that

every matrix has a finite displacement rank. This is not difficult to see

from first principles, and it will follow immediately from Proposition 1.1

below.

DEFINITION 1.2

For a row vector x=(xl,... ,x), let X=(Xn .,X). xT will denote the

column vector (i)

I!

1



1(x)dentesthe owe tranguar oepitz atrx wth frstcolmn T. U)
L~denotes the pp er triangular Toeplitz matrix with first o um x. Le Zb xth

matrix L((O,1,O,... ,O)) and let Z' be the matrix U((O,1,O,...,O)

LEMMA 1.1

For an n x n matrix M, we have

(a) (ZMZ').. = H ,j- for i>1 and P>1.

0 for i=1 or j=1.

(b) (Z'MZ)i. Mi N j~ for i<n and j<n.

O for in or j~n

REMARK

We see from Lemma 1.1 that ZMZ' is the displacement of M "one step down" I
the diagonal and that Z'MZ is the displacement "one step up."

PROPOSITION 1.1

Let M be an n x n matrix.

(a) a+.(M) =rank (M-ZMZ').

(b) or(M) = rank (M-Z'MZ).

(c) If M is invertible, then a+CM) 0= M

N N
(d) M-ZMZ' = i yi iff M L(xi)U(y1).

N N

r.(e) M-Z'MZ = . xiy i1ff N M U~xi)L(Y1).

2



REMARK

It is obvious from (a) and (b) of the above that the displacement ranks
of M are both less than or equal to the dimension of M.

DEFINITION 1.3

Let x=(x,... ,xn), Y=(Y""'Yn) " x y is the row vector z=(zl,...,Zn),

where zj- xiyj+1 -i.
i-1

x#y is the row vector w=(w,... ,W2n) given by w=(xl,... ,xn,O,...,0)*
(y11... ,yn,O,... ,O). tr(x,i) is the n-vector (x1,...,xO,...,O).

PROPOSITION 1.2

Let x=(x ,...,xn), Y(Y1""'Yn) "

(a) L(x)L(y)=L(x y).

(b) U(x)U(y)=U(x y).

Let C+ denote the jth column of L(x)U(y).

Let C. denote the jth column of U(y)L(x).

Let Ri denote the ith column of L(x)U(y).

Let Ri denote the ith column of U(y)L(x).

(c) C+(i) = x#tr(y,j)(n+j-i).

(d) C:(i) = y#tr(x,n+1-j)(n+j-i).

(e) Ri(j) = tr(x,)#y (n+j-i).

(f) Ri(j) = tr(y,n+l-i)#i (n+j-i).

3



REMARK

Proposition 2 gives formulas for products of triangular Toeplitz

matrices. Products of similar forms are given by a single convolution. For a
product of dissimilar forms, an entire row or column of the product is

obtained by one convolution.

PROPOSITION 1.3

Let x, y, Cj and R be as above.

(a) L(x)U(y)=IL(z)+U(w)I-U(j)L(y),

where - = (0, xn ,x2), y = (0, yn,...2 ) , z = Rn, w = tr(Cn, n-I).

(b) U(y)L(x) = L(z').I + 1-U(w °) -L()U( ),
where and - are as in (a), z' :C1,adw ORI2,.,In)

REMARK

The contents of this result is that LU (or UL) products may be turned

into UL (respectively, LU) products with two convolutions and some rearrange-

ment of vector entries.

PROPOSITION 1.4

Let P be an n x n matrix of rank m, and let A be a nonsingular m x m
minor. Let xT be the column of P corresponding to the ith column of A, let wk
be the row of P corresponding to the kth row of A, and let W be the m x n

matrix whose kth row is wk. If yj is the jth row of A 'W, then

m
P= T

xiyi.
i =1

4



0

n nA1,

ao

0

(d) T21  L((xn),,... ,x~in) UMyn+l* '..,n"

ao

(e) I*, (O,X~i),... ,x2  ) * Y~i),***Yi)

L(v).I + J-U(w).

Here

a
0

v = (C+(i)(n),..,C+(1)(2n-1))
n '** n

and

w = (0 ,Rn(i)( n+l),...,Rn'(n1)

6



I.

REMARK

Propositions 1.2 and 1.4 allow us, in principle aL. least, to form (+) or

(-) decompositions of arbitrary matrices M.

PROPOSITION 1.5

Let T be an invertible matrix subdivided into retangular blocks; Tll,

T12, T21, and T22, where

T= (T11 T12

Let S=T "  be similarly subdivided. Then, if T is square and invertible,

(a)~~~ S _ T1 1 T12(T2  - T 1T-1 T )_1 T T

(a) 1  11 -12 2 21 11 12 21 11'

() 12 -1  
- 1 T 1(b) $12 = -T11 T12 (T-22-TT1I TI2)I

(C) S 21 = - T 2T 1  12'IT -

(d) $22 = (T22 - T21 T 1  T12).

PROPOSITION 1.6

Let T be as in Proposition 1.5. Let each Tij be square and of size

n x n. Let T have a (+) decomposition of the form

T = L(Cx(i),...,x1))) U((41)...' )

Then

(a) $22 has (-) displacement rank less than or equal to a0. Also,

the Tij have (+)-decompositions of the following forms:

5



where C(i)(j) is the jth entry of the nth column of L(xi)n

U(yi)) and Rn(i)(j) is the jth entry of the nth row of the

same matrix.

B. AN OUTLINE OF THE ALGORITHM

The algorithm described in Bitmead and Anderson', is a recursive one.

Given a matrix of size 2n, the matrix is subdivided and the algorithm is

applied to matrices of size n. These matrices are recombined to give the

inverse of the 2n x 2n matrix. More precisely, the algorithm proceeds as

follows:

00

Assume that T = > L(xi) U(yi) is given.
i=1

1. Subdivide T into Tll, T12, T21, T22 using Proposition 1.6.

a0

2. Use the algorithm to write T-1 as T = Uj L (That such a

j=1

decomposition exists if T11 is invertible follows from Proposition 1.5(a) and

Proposition 1.1(c).)

3. Use the results of step 2, Propositions 1.2, 1.3 and 1.6 to write

p

(TIT T 12= T Lk Uk. (In fact, generally, the number22 211 12) k=l

of terms is 3a + 6a2 + 4 + 2.)
0 0 0

4. Using Propositions 1.2, 1.4 and 1.1, express (T22 - T21 T-1 T12) as

ti i. (That this is possible follows from Proposition 1.6(a) and
i=1

Proposition 1.1(c).)

7



5. Use the algorithm and the result of step 4 to write S22 as

a0

s22 = (T2 2 - T2 1 T11 T12 ) 1 = VU Li.
i =1

6. Using the result of step 5 and step 2, calculate minors S11 ' $12' $21

of T-1 , where the notation is as in Proposition 1.5. Express each of the

minors as a sum of terms Sab = U i Li. (The number of terms depends on
i=1

3 2the subscripts "a" and "b." For $22 , 1 = a o . For S12 and S21, 2 % + 3o

5 4 3For Sill 9a0 + 18a + 9 + ao.)

Using the results of step 6 and employing Propositions 1.1, 1.2 and 1.4,

write S as

a0

5= U i Li .
i =1

(This is possible by Proposition 1.1(c).)

In the next section, we shall prove the results quoted in this section,

as well as stating and proving some special results for symmetric matrices.

In the third section we shall give a more complete exposition of this

algorithm for the special case of positive definite symmetric Toeplitz

matrices.

8



SECTION TWO

In this section the proofs of Propositions 1.1-1.6 are given, as well as
some special results for symmetric matrices.

LEMMA 1.1

For an n x n matrix M, we have

(a) (ZMZ')..j = M.i,,- for i>1 and Pi1.

= 0 for i=1 Lr j=1.
(b) (Z'MZ).. = M.,., for icn and j'zn.

= 0 for in or jn.

PROOF

(a) Definition 1.2, Z ik 6 i6 1kZ'* = 6mj1

n
Thus, (ZMZ'). 6 M m,j-j.' which implies (a).

n
(b) (Z'MZ)~ =j 6 6ik-1 M km 6m,,, which implies (b).

k ,m- 1

LEMMA 2.1

Let x=(x1 ,..., dXn) Y=-(Yll* .. yn) If we define x5, Yt=O for s, t<O, then

n

(a) [L(x) U(y)]1j = Xi+lm Yj+1-m-

(b) [U(y) Lox))k' = ~~'1kXel2

9



PROOF

From Definition 1.2,

[L(x)]i = xi+l.g and [U(Y)]kj Yj+1-k'

with the convention that xs, Yt=O for s, t<O. From these two relations, (a)

and (b) follow immediately.

LEMMA 2.2

Let M be an n x n matrix. If there exist row vectors a1,...

bl,...,b. such that

M = ai bi ,
" i=1

then rank M < min(rank{ai}, rankfbi}). Further, if rank(M) = m, then there

exist row vectors a1 ,...,a , bl,...,bm such that the relation given above

holds for M.

PROOF

As a linear operator on column vectors, the range of M is a subspace of

span aT and the range of MT a subspace of span b Since rank M = rank

MT, the inequality given above holds.

Next, if rank M = m, then there exists a spanning set of rows of M:

bl,..., bm* If v is the jth row of M, then there exist coefficients

a).a ) such that

m

vj aWJ) bi for 1<j<n.
i=1

Let a1 = (a1 )  ,a1n)). Then the relation given above holds for M.

10



LEMMA 2.3

Let x = (xl,...,x), y = (y 1 ,... ,yn) and let x = (Xn,...X 1 ), y =

no .... Yl). Then

(a) L(x) U(y) - Z L(x) U(y) Z' = xT y.

(b) U(y) L(x) - Z' U(y) L(x) Z = ;T .

PROOF (a)

[L(x) U(y) - Z L(x) U(y) Z']ij

n n
Xi+-m Yj+1-m - (1-6 i,)(1-6j,1) Xi-m Yj-m'

m=1 ~

by Lemmas 1.1 and 2.1. But this is just xi yj.

PROOF (b)

As above

(UL - Z'ULZ)e =

n n

Ym'+1-k Xm'+l- - (1-6kn)(l-6kn) IYm'-k Xm'-i"

m'=l m1=1

This equals yn+1-k Xn+l-k' which is the kk entry of y T x.

LEMMA 2.4

If A and B are n x n matrices, rank(I-AB) = rank(I-BA).

PROOF

Since A and B are n x n, it is enough to show that the dimensions of the

null spaces of I-AB and I-BA are equal. However, if xl,...,Xk are independent

11



and satisfy x = ABxj, then clearly Bxi,...,Bxj are independent (else ABxi
= xi are dependent) and (Bxj) = BA(Bxj).

PROPOSITION 1.1

Let M be an n x n matrix.

(a) a+(M) = rank(M - ZMZ').

(b) a_(M) = rank(M - Z'MZ).

c) If M is invertible, then a+(M) = a(M 1 ).

n n

(d) M- ZMZ' x! yi iff M : L(xi) U(yi).
i=1 1=1

n n

(e) M- Z'MZ x! y, iff M = U(xi) L(Yi).
i=1 i=1

PROOF (d)

The map A * A - ZAZ' is linear. Also, by induction on the dimension, one

can easily see that A - ZAZ' = 0 implies A = 0. It is clear from Lemma 2.3

that if M =jL(xi) U(yi), that M- ZMZ' = x T yi. Conversely, if M- ZMZ'

is equal to xT yi, then let M. >2L(xi) UYi). Then (M- Ko) -

Z{M - M0) Z' 0, and so M= Mo.

PROOF (e)

This follows just as for (d).

12



PROOF (a)

Say M = L(xi) U(yi). Then, by (d) and Lemma 2.2, rank(M -ZMZ') <a+

Also, if rank(M - ZMZ') = ,then, by (d) and Lemma 2.2, >a..

PROOF (b)

This is immediate from (e) and Lemma 2.2.

PROOF (c)

If M is invertible, using Lemma 2.4, a+(M) =rank(M - ZMZ')=

rank(I - (ZM)(Z'M) =1 rank(I - (ZIM-1)(ZM)) =rank(M 1 - ZIM 1Z) a-(M-1

(This is Theorem 1 of Kailath, Kung, and Morf, [2].)

PROPOSITION 1.2

Let x = (x,,... pxn~ d ' Y=Y1.. n)

(a) L(x) L(y) = L(x y).

(b) U(x) U(y) = U(x y). Let C+ denote the jth column of L(x) U~y).

Let C. denote the jth column of U~y) L(x). Let R+ denote the

ith row of L(x) U(y). Let R : denote the ith row of U(y) L(x).

(c) C+Mi = x # tr(y,j) (n+j-i).

(d) C Ci) = y # tr(x,n+1-j) (n+j-i).

(e) Ri+(j) = tr~x,i # y(n+j-i).

(f) R :(j) = tr(y,n+l-i) # x(n+j-i).

11



PROOF (a)

From Definition 1.2, [1(x))i x= ,_j Thus,

n n
[1(x) I i+- k+1-j I k'1 Y(i+l-j)+1-k'

by substituting k'=i+1-k. But this last is just the (i+l-j) entry of (x y),

which is what we wished to show.

PROOF (b)

As in (a)

n n
[1.(x) U(Y)Jij Xk1= Yj+I.k I = Xk' Yj+-i).1-k-

k=1 k'=1

by substituting k'=k+.-i. This sumi above is the (j+l-i) entry of (x y).

PROOF (c)

From Definition 1.3, for a=-(al,... ,an, b=(b1, ... I )

tr(a,j) # b(k) a ai b 1-i

letting a--y, bxi, k7-n+j-i and using the fact that w#vv#w, we get that

x #t tr(y,j)(n+j-i) A y~(n+l)-(n+ji+l1P)

n

£ '=1

The proofs of (d), (e) and (f) are similar to that given for (c).

14



PROPOSITION 1.3

Let x, y, C and Ri be as above.3 I

(a) L(x) U(y) = I*L(z) + U(w)*I - U(x) L(y),

where

= (OXn9,...,Ix2) , Y= (O,Yn, ...,Iy2),

+

z R+ and w =tr(C ,n-i).nn

(b) U(y) L(x) = L(z').I + I.U(w') - L( ) U(),

where

and y are in (a), z'=C1 , and w'=(O,R1 (2),...,Rl(n)).

PROOF (a)

For i<n and j<n,

[L(x) U(y) - Z'L(x) U(y)Z]ij =

C+(i) - Cj+l(i+l) = x # tr(y,j) (u+j-i) -

x # tr(y,j+l) (n+j+l-i+l)

= -x # (O,...,Oyj+1 , 0,...,0) (n+j-i),

where the yj+1 occurs in the j+1 place. This last quantity is just =xi+1

Yj+l' by Definitions 1.2 and 1.3. (Recall that Xk = Xn+l-k') From this, the

ij element of LU-Z'LUZ, for i<n and j<n, is given by -(x2 ,x3,... XnO)T

(y2 ,...,n
0 ). The entries of the nth row are just given by (0,0,...,l)TR.

The entries of the nth column (excluding the nn element, to avoid duplication)

are gie yt 4 nT ,0 1 T +are given by tr(Cnn) (0,...,0,1). Thus LU-Z'LUZ is given by (0,...,0,1) Rn

15



+ tr(C+,n)T (0,...,0,1) - (x2,x3,...,xn,O)T . YO). The result then

follows from Proposition 1.1(e).

PROOF (b)

This follows just as in (a).

PROPOSITION 1.4

Let P be an n x n matrix of rank m, and let A be a non-singular m x m

minor. Let xT be the column of P corresponding to the ith column of A, let wk
1 k

be the row of P corresponding to the kth row of A, and let W be the m x n

matrix whose kth row is wk. If yj is the jth row of A-1W, then

m
P XT Yi

i=1

PROOF

T

Let X be the n x m matrix whose ith column is x. Then, what we wish to

show is, if we let P'-RA 1'W, that P=P'.

Let us examine the matrix X.

(r1) (r 1 )

x(rm)  rm)J

x~n) ... xmn)

16



Here, we have boxed the rows in X which correspond to rows of A. (That is,

the rows in P which contain the rows of A are labeled rl,...,rm.) Similarly,

the matrix W has the form

WC) Wm..W(n)

(C (Cm

where the m x m matrix formed by the boxed columns is also A.

It is immediate from its definition that the n x n matrix P' has rank<m.

Further, it is clear from the above discussion of R and W that the matrices P

and P' agree on the ij elements where i=rl,... ,rm or j=CI,..., Cm. We wish now

to show that P=P'.

By interchanging rows and columns, we may take P and P' so that ri=i and

Ci=j. Thus, we have

P and P' Q 9

where P and P' are both n x n and of rank m. Since the columns of A are

independent, a column of W1 may be expressed in only one way in terms of the

columns of A. But this implies that the columns of P1 and Pi are equal, or

LEMMA 2.5

Let P be an n x n matrix of rank m. If the ranks of the rows indexed by

il,... im and of the columns indexed by j1,...,jm are m, then the minor

(PikJ) k,=l,...,m is invertible.
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PROOF

This result is clearly independent of any row and column rearrangements,
so that we may assume that i k=k and j k=9. Let us denote the principle m x m

minor of our (possibly rearranged) matrix P by M, and let us assume that M has

rank k. Finally, let us take the columns of P to have been so arranged that

the first k columns of M are a basis for the columns of M. Then P is of the

form

where A has rank k, (MIR) has rank m, (!) has rank m and P has rank m. Let us
suppose that km. Then, since the rank of (MIR) is m, there must exist a

column of R which is independent of the columns of M. But then, the

corresponding column of (R) in P must be independent of (!)in P, and thus the
rank of P must be greater than m. This is a contradiction and so k--m and M is

invertible.

PROPOSITION 2.1

Let P be a symmetric n x n matrix of rank m and let M be an invertible

m x m minor. Then there exists an invertible m x m minor A, such that A is

symmetric with respect to the diagonal of P and the rows of P which contain A

also contain M.

PROOF

The rows of P which contain M have rank m. This is also true of those

columns of P obtained by transposing these rows, since P is symmetric. The

result follows from Lemma 2.5 if we take A to be the minor formed by the

"intersections" of these rows and columns.

REMARK

This result will be of use to us in modifying the algorithm of Section 1

for the special case of T symmetric.

L18



LEMMA 2.6

Let T be an invertible matrix subdivided into rectangular blocks T

T12, T21 , T22 , where

T = T 11 T12 1

T21 T22

If T is invertible, then so is T - T 1T -T B.
11 22  T21 11 12

PROOF

Suppose that T22x TT-T1 T x. Let z = T-jT x. Then22 T21T11T12. Let z 12x.Te

T(z) ( T11 z T T12  x T T12 x T (0 )
0O T21 z T2T 1 T x T22 x

Since T is invertible, x=O.

REMARK

Lemma 2.6 is needed for the proof of Proposition 1.5.

PROPOSITION 1.5

For T, Tij as in Lemma 2.7, let S =T and S be subda. ,ed in a manner

similar to that of T. Then

(a) S1 T-1 + T-1 T( T- 1T TT
11 T11 T12(T22  T21T 1T 12) 21T11

(b) S1 - T 1 (T 22 -T - )1

12 T2  T 21 1
1

12

21 12 21 11

(d) S22 = CT22 - T21T1JT12

19



PROOF

This follows easily from Lemma 2.7 by matrix 
multiplication.

PROPOSITION 1.6

Let T be as in Proposition 1.5 with each of the 
Ti of size n x n. Let T

have a (+)-decomposition of the form

T L((x('),... ,x2())) U( i(),.I(0)
1=1

Then

(a) $22 has (-)-displacement rank <- o. Also, the 
Tij have

(+)-decompositions of the following forms:

(b ) T 1 1 = M x ) 1i ' .i)' n Ci)'. .

1=1

(C) T12 = W i 1i) U( ,.. ,I.1 )))

= C(Xn1 l,. • .. i

1=1

(x1 ),.. Ci) x ( 'o i) ... y~i -I.

1 1 n+1 n* 2~n~~~**'

Ce) T CO ( Cy'),. M .. ty ())+
22C n+1~* X2n n))2

L(V). + I'U(W).

20



Here

v= (c(i)(n),...,C (i)(2n-1)) and

w : (O,R(i)(n+1),...,R(i')(2n-1)),

where C+(i)(j) is the jth entry of the nth column of L(x(i)) U(y ) and

R+i)(j) is the jth entry of the nth row of the same matrix.

PROOF (a)

$22 is the lower right hand minor of size n x n in the 2n x 2n matrix S.
Since S has (-)-displacement rank a0, by Proposition 1.1(c), rank (S-Z'SZ)=ao .

But S22-Z'S22Z is a minor of that matrix and, therefore, a+(S 22 )<ao. (Here

Z,Z' are assumed to be of the same size as the matrices S,$22 in expressions

where they occur.)

PROOF (b)

To prove (b)-(e), it is clearly enough to show these results for ao=1.

Consider the matrix T=L(xl,....x 2n) U(y1,... Y2n). The minor T is clearly

the product of the first n rows of L with the first n columns of U, which is

simply the expression in (b).

PROOF (c)

T12 is the product of the first n rows of L with the last n columns of U.

However, since the first n rows of L are zero from the (n+l) entry on, T12 =

11. U12, where the notation has the obvious meaning. Since U12 is of the form

U((Yn+l,...,Y2n) + L((Oyn, ...y2 )), and since the product of lower triangular
Toeplitz matrices is lower triangular Toeplitz, we have (c).
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PROOF (d)

Follows just as does (c).

PROOF (e)

Consider (LU-ZLUZ') 22. This is just (T22-ZT22Z')-R, where R is the

matrix whose first row is vector (R+(n),... ,R+(2n-1)), whose first column isn n
(C (n),...,C (2n-1))T and the rest of whose entries are zero. The formula inn 'n

(e) follows from this and Proposition 1.1(d). (See Figure 1.)

al' .. al, n  al,n+l*..al,n+m

If A 1( "12 a)n-n .. a n1n a n~n~1*. ann+m ,then

;211"2 a n+l,n*.* an+l,n+l.'. an+l,nm

an,1 an+ln+m.. an+m,n+m

0

0 0
(- A) Al1 - ZA 11 Z' A 12 - ZA 12 Z' a n..n(( -,Z' A - zAZ' a ... a

21 ZA21 Z'A22 - ZA12 Oa n,n... an,n-1 an,n... an,n+m-1

0 0
ann+m- 1

Figure 1.
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SECTION THREE

In this section a version of the algorithm outlined in Section One will
be presented in more detail. We shall be concerned with the special case of T

a symmetric positive definite Toeplitz matrix. In describing the algorithm,

we shall make use of three "procedures," which we shall refer to as SUBDIVIDE,

DECOMP and PRODUCT. We give descriptions of these procedures below, together

with discussions of their storage requirements and computational complexity.

Following the descriptions of the procedures, we present the algorithm.

A. THE PROCEDURES

(1) SUBDIVIDE

This procedure takes a (+)-decomposition (of a 2n x 2n matrix T) of the

form L(x1 ) U(yl) + L(x2 ) U(y2) and returns (+)-decomposition of the 4 n x n

minors described in Proposition 1.6. The lengths of the decompositions of

Tll, T12 , T21, and T22 are, respectively, 2, 3, 3 and 4. If 0(n) is the

number of computations needed to convolve two n-vectors (here we make no

distinction between x*y and x#y), this procedure requires 40(n) computations,

plus some overhead which we shall ignore.

(Here we are not distinguishing between the various types of arithmetic

operations in our analysis.)

The space required to store the "matrix" T goes up from 8n to 24n as a

result of this procedure, assuming that the original decomposition of T is not

saved.

(2) DECOMP

Let R denote a symmetric positive definite n x n matrix with (+)(or(-))-

displacement rank <2. This procedure takes a (+)(or(-))-decomposition of

arbitrary length N, and returns a minimal (+)(or(-))-decomposition. Since the
(+) and (-) versions of the procedure are completely analogous, we shall

examine only the (+) version.

23



Let P=R-ZRZ'. By our hypothesis on R, P is symetric, has rank <2, and

the element P11 is positive, which implies that the first row and first column

of P are both non-zero. Thus, if we wish to find a maximal minor of P, by

Proposition 2.1 this minor is either of the form (P11 ) (and the rank of P is

1), or of the form

P P1
£1 P££/

Therefore, all that is necessary is to calculate the determinants of 2 x 2

minors of the form given above. Thus, we need to calculate the first row and

the diagonal elements of P.

If

N N

R = L(xi) U(yi), then P = T
i=1 i=1

and calculating the first row of P requires N-n multiplications and N-n

additions. Similarly, calculating the diagonal of P takes 2N-n computations.

Calculation of the appropriate determinants requires 3n computations and

comparison of the results to select the "best" minor requires approximately

and additional n calculations. Finally, calculation of the minimal decompo-

sition takes additional 6n computations if P has rank 2 and n computations if

P has rank 1. Thus, the total number of computations is at most (2N + 1O).n.

The required storage goes from 2Nn to at most 4n. (In the event that this

algorithm or one like it is ever implemented, this procedure will need to be

examined for numerical stability. It seems likely that this procedure is the

critical area of the algorithm in this regard.)

(3) PRODUCT

Let D+, D. denote decompositions of (+), respectively (-), type. This*1 j
procedure will have 3 versions: (1) 3-plus, (2) 3-minus, and (3) 5-minus.

The 3-plus version takes decompositions D+ and D-, of ranks 3 and 2,

respectively, and returns a (+) decomposition of the product (D1)(D 1)(D1).

24
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The 3-minus version takes decompositions D+ and D1, of ranks 3 and 2,

respectively, and returns a (-)-decomposition of the product (D )(D )(D1 ).

Finally, the 5-minus version takes decompositions D, D1, and 0 of ranks 3,

2, and 2, respectively, and returns a (-)-decomposition of the product

(D 0)+D)(D )(0D+)(D~) As the three versions are analogous, we shall examine
only the 3-plus version and state the results needed for the other two.

In evaluating the product (D1)(D 1 )(D1), there will be 3 x 2 x 3 = 18
terms of the form (L1U1)(U2 L2)(L3U3) to decompose. Using Proposition 1.2 and

2 x 18 = 36 convolutions, these terms become 18 terms of the form L1(U4L4 )U3.

Then, by 2 x 18 = 36 more convolutions we obtain, from Proposition 1.3, 18

terms of the form LI(L5 .I + I-U5 + L6U6 )U3. This requires an additional

4 x 18 convolutions to yield, finally, 3 x 18 = 54 terms of the form L7U7.

Thus, the total number of convolutions required is 36 + 36 + 72 = 144, and

the storage requirement is an additional 108n.

The 3-minus version requires 96 convolutions and space for an additional

72n numbers.

The 5-minus version requires 2016 convolutions and space for an

additional 648 terms of the form UL, or 1296n additional numbers.

B. THE ALGORITHM

The algorithm for a symmetric, positive definite, 2k x 2
k Toeplitz matrix

T is as follows:

(0) Assume that T has been decomposed as LIU 1 + L2U2 ,
(1) If the input matrix is of sufficiently small size, invert it.

Otherwise, call SUBDIVIDE.

(2) Use the algorithm to invert T1l and return T1 as UL + U'L'.11 11
(3) Use the results of SUBDIVIDE, step (2), and the 3-plus version

of PRODUCT to form a (+)-decomposition of T21 T1T12.

the decomposition of T22 given by SUBDIVIDE to form a (+)-

decomposition of the matrix B=T22 -TITlT 12. (Since B is a

symmetrically located minor of the symmetric, positive definite
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matrix T B is symmetric, positive definite matrix. Also, by

Propositions 1.6(a) and 1.1(c), a+(B)<2.).

(4) Use DECOMP on the result of step (3) to obtain a minimal

decomposition for B.

(5) Use the algorithm to find S22=B
1.

(6) Use the 3-minus version of PRODUCT to get a decomposition of

S 1 _ S T T-1 Use the 5-minus version of PRODUCT to obtain aS21- 22T21T11 •  1- -1 -1

decomposition of T11 12 S22 T21 T11 and append T11 to get a

decomposition of Sll"

(7) Use (an obvious modification of) DECOMP on the results of steps

(5) and (6) to find a minimal (-)-decomposition of S=T"1 .
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SECTION FOUR

In this section we present an analysis of the algorithm given in the
previous section. For simplicity we treat all arithmetic operations

identically and assume that the displacement ranks of the minors encountered

in the execution of the algorithm are maximal. Thus, the values given here

for computational complexity and storage requirements are upper bounds. It

seems likely, however, that these upper bounds in practice would be fairly

sharp. Since this algorithm has not been, and in its present form is likely

never to be, implemented, this is only speculation. In any event, the

analysis should demonstrate that this algorithm's demands in terms of storage

and computational complexity are too great for it to be practical in its

present form.

A. COMPUTATION COUNT

Let C(n) denote the number of operations needed to invert a symmetric,
positive definite, Toeplitz matrix T given in the form of a (+)-decomposition

of size 2. Then, from Section Three,

C(2 a ) = 4-e(2 a) step (1)

+ C(2a-
l) step (2)

+ 144 .,(2a
-1) step (3)

+ 126 .2a-1 step (4) (B has 58 terms)

+ C(2a-l) step (5)

+ (96 + 2016 ).0(2a-1) step (6)

+ 4.2a-1 + 1300.2a 1 + step (7)

2.0(2a-i) + 650 -e(2a 1) + (by an analysis similar to
that given for DECOMP in §3)

Thus C(2a)-2C(2ai) + 28000(2a 1) + 1400 .2 a
l  Now a FFT of a vector of

length N=2Y requires 3N.y/2 operations. The convolutions of two vectors of
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length 2a- require padding both vectors with zeroes to make them of length
ta FT a a1 9.a.

2a , two FFTs, 2 multiplications and another FFT. Therefore, 0 (2a
- ) =.2 *a

+ 2 a . Therefore, C(2a)2C(2 a -) + (12,600a + 2,100)2 a. (It is likely that

these coefficients could be reduced if one required the matrix T to be real.)

Assuming that C(1)=1, then

n

C(2 n)  2n-a (12,600a + 2 ,100 )2a + 2n

a-I

= 2n(2 ,100-n + 12,600 (211)012 + 1)
2

2 2(6,300.n2 + 8,400.n + 1).

That is, C(N)~6,300 N(log2N)2 + 8,400 N(log2N) + N.

Comparison with techniques which require 2N2 operations to invert

symmetric Toeplitz matrices show that the algorithm given here is as fast as
2 21 6these when 3,150(log2N) + 4,200(log2N) = N, or for N > 2 22x0.

B. STORAGE REQUIREMENTS

It is obvious that the maximum amount of storage is required by the

algorithm following the last execution of step (6). The principal amount of

storage is required to hold the decompositions of S11 and S21. This amount is

684.n numbers, where T is an n x n matrix.

To conclude, the algorithm presented in Section Three for inversion of

symmetric, positive definite, N x N Toeplitz matrices:

(1) Has computational complexity asymptotic to 6,300 N(log 2N)
2.

(2) Has storage requirements of at least 684.N.
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